The Lowest Lying Singlet and Triplet States of the Halonitrenium Ions NX_2^+ and NHX^+ and a Comparison with the Carbon Analogues CX_2 and CHX (X=F, Cl, Br, I).# A Theoretical Study¹⁾

Alberto Gobbi and Gernot Frenking*
Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35037 Marburg, Germany
(Received April 8, 1993)

The equilibrium geometries, energy differences, and vibrational frequencies for the energetically lowest lying 1 A₁ and 3 B₁ states of NH₂⁺, NHX⁺, and NX₂⁺ (X=F, Cl, Br, I) are theoretically predicted using ab initio quantum mechanical methods at the MP4/6-311G(2df)//MP2/6-31G(d) level of theory. Effective core potentials are employed for bromine and iodine. The isoelectronic carbenes CH₂, CHX, and CX₂ are also calculated. The electronic structure of the molecules is investigated using the topological analysis of the electronic wave function.

Methylene has a (³B₁) ground state, which is 9.0 $kcal mol^{-1}$ lower in energy than the first excited (${}^{1}A_{1}$) singlet state.²⁾ The singlet-triplet gap of CH₂ has been the subject of numerous theoretical papers³⁻⁶⁾ and two reviews of the theoretical studies are published.⁷⁾ The early disagreement between the experimentally reported and theoretically predicted first excitation energy of methylene was finally resolved in favor of theory.⁶⁾ Theory also played a role in the prediction of the electronic ground state of the halogen substituted methylenes CHX and CX₂ (X=F, Cl, Br, I).8-13) Difluoromethylene CF₂ has a (¹A₁) singlet ground state, which is $56.7 \text{ kcal mol}^{-1} \text{ more stable than the } (^{3}\text{B}_{1})$ triplet state, in good agreement with theoretical predictions $(55.6-57.5 \text{ kcal mol}^{-1}).^{8,11}$ Only few experimental data are reported for the other halogen substituted methylenes. Upper bounds for the $({}^{3}B_{1})\leftarrow({}^{1}A_{1})$ excitation energy are reported for CHF, CHCl, CHBr, and CHI. 15) The halogen substituted methylenes CHX and CX₂ (X=F, Cl, Br, I) have been studied theoretically with exception of CHI.8—13) All investigated molecules CHX and CX_2 with X=halogen are predicted to have a (¹A₁) singlet ground state.^{8—13)} The singlet-triplet gap is lower in CHX than in CX2 for a given halogen atom X and it becomes smaller with the order F>Cl>Br>I. The stabilization of the singlet state by the halogen atoms has been attributed to the π -donor ability of the substituents. 16,17) An alternative explanation is based upon the electronegativity of the substituents X in CX₂, which yields a larger HOMO-LUMO gap when X becomes more electronegative. 10,11,18)

The nitrenium ion $\mathrm{NH_2}^+$ is isoelectronic to methylene. In contrast to the latter, however, $\mathrm{NH_2}^+$ and its halogen substituted derivatives NHX^+ and $\mathrm{NX_2}^+$ have received very little attention. Like $\mathrm{CH_2}$, $\mathrm{NH_2}^+$ has a ($^3\mathrm{B_1}$) ground state which is 30.1 kcal mol^{-1} lower in energy than the ($^1\mathrm{A_1}$) first excited state. ¹⁹⁾ This is in good agreement with theoretically predicted singlet–triplet

gaps of $29.1-32.4~{\rm kcal\,mol^{-1}}$ for ${\rm NH_2}^+.^{20-24)}$ Thus, the $(^{1}A_{1})\leftarrow(^{3}B_{1})$ excitation energy of NH_{2}^{+} is clearly larger than for CH₂. The only halogen substituted nitrenium ions studied so far are NHF⁺ and NF₂⁺. The (1A₁) ground state of NF₂⁺ has theoretically been investigated by three different groups.^{25—27)} The reaction of NF₂⁺ with CH₄ was studied experimentally using ion cyclotron resonance techniques.²⁷⁾ Among other products, the formation of the radical cation CH₃NFH⁺ was observed, which was explained by the presence of a triplet state of NF₂⁺.²⁷⁾ The only theoretical study of the singlet-triplet gap of halogen substituted nitrenium ions is an early report for NHF⁺ and NF₂⁺, but on a rather low level of theory.²⁸⁾ There are no experimental or theoretical studies of other halogen substituted nitrenium ions NHX⁺ and NX₂⁺ known to us.

In this paper we wish to report the results of the first systematic ab initio investigation of the molecules NHX⁺ and NX₂⁺ (X=F, Cl, Br, I). For comparison, we also studied NH₂⁺ and the methylene analogues CH₂, CHX and CX₂ (X=H, F, Cl, Br, I). We calculated the geometries, energies and vibrational frequencies of the lowest lying 3B_1 and 1A_1 states, and we studied the electronic structure of the molecules using the topological analysis of the electron density distribution developed by Bader and coworkers.²⁹⁾ Relativistic effective core potentials³⁰⁾ (ECP) are used for Br and I, and allelectron basis sets are employed for the other atoms. The contribution of correlation energy is estimated using Møller–Plesset perturbation theory.³¹⁾

Theoretical Methods

The geometries for the lowest lying 1A_1 and 3B_1 electronic states of the investigated molecules have been optimized using Møller–Plesset perturbation theory³¹⁾ terminated at second order (MP2) using the ECP by Wadt and Hay³⁰⁾ for bromine and iodine and the 6-31G(d) all electron basis set³²⁾ for the other atoms. The (3/3) minimal valence basis sets for Br and I are uncontracted and augmented by a set of d-type polarization functions³³⁾ with exponents ζ_d =0.428 (Br) and ζ_d =0.289 (I), i.e. the basis set is [21/21/1]. Unrestricted (UHF) wave functions³⁴⁾ are calculated for the

 $^{\# \}mbox{This}$ study is dedicated to the memory of Professor Hiroshi Kato.

triplet state and spin restricted (RHF) wave functions for the singlet states. All electrons are included in the correlation treatment. The vibrational frequencies and zero-point energies (ZPE) are calculated at the same level of theory. The ZPE corrections are scaled by $0.9.^{35}$

Improved total energies are predicted at the MP4 (SDTQ) level using the uncontracted ECP valence basis sets augmented by two sets of d functions³⁶⁾ and one set of f functions³⁶⁾ [111/111/11/1] for Br and I in conjunction with a 6-311G(2d,f) basis set³⁷⁾ for the other atoms. The exponents for the polarization functions at Br and I are $\zeta_{d1}=0.214$ (Br); $\zeta_{d2}=0.856$ (Br); $\zeta_{f}=0.569$ (Br); $\zeta_{d1}=0.1445$ (I); $\zeta_{d2}=0.578$ (I); $\zeta_{f}=0.433$ (I).^{33,36)} The MP4 (SDTQ) calculations are carried out with the frozen-core approximation. Unless otherwise noted, energies are discussed at the MP4/6-311G(2df)//MP2/6-31G(d)+ZPE level of theory. All calculations were performed using the Gaussian 92 program series.³⁸⁾ For the calculation of the electron density distribution $\rho(r)$, the gradient vector field $\nabla \rho(r)$, and its associated Laplacian $\nabla^2 \rho(r)$ the programs PROAIM, SADDLE, GRID, and GRDVEC were used.³⁹⁾

Results and Discussion

Table 1 shows the theoretically predicted energy differences between the $(^{1}A_{1})$ singlet state and $(^{3}B_{1})$ triplet state for the carbenes and nitrenium ions in comparison with experimental data and previously calculated results. The total energies are shown in Table 2, the optimized geometries in Table 3.

The $(^{1}A_{1})$ singlet state of CH₂ is predicted 12.9 kcal mol⁻¹ higher in energy than the (³B₁) ground state, 2.9 kcal mol⁻¹ higher than experimentally observed.²⁾ The error in the calculated value is mainly due to the one-configurational treatment of the singlet state. It has been shown that a much better agreement with experiment is obtained when at least a two-configuration (TCSCF) wave function is used as reference for (¹A₁) CH₂. ^{10,40)} A multiconfigurational wave function appears not to be necessary for the halogen substituted methylenes. Table 1 shows that the calculated excitation energy from the $({}^{1}A_{1})$ ground state to the (${}^{3}B_{1}$) first excited state of CF₂ (57.6 kcal mol⁻¹) is in very good agreement with the experimental value (56.7 kcal mol⁻)¹⁵⁾ and with calculated results predicted at other high levels of theory. The agreement of the theoretical values calculated for other halogen substituted carbenes CHX and CX2 with ab initio results obtained at a multiconfigurational level is also very good. In particular, we want to point out the very similar results calculated at the correlation consistent CI (CCCI) and dissociation consistent CI (DCCI) level of theory reported by Goddard and coworkers⁸⁾ for CF₂, CCl₂, CHF, CHCl, and our results. Also the TCSCF+CI results for CHF, CHCl, CHBr reported by Scuseria et al.⁹⁾ are not very different from our data (Table 1). Therefore, we think that the theoretically predicted singlettriplet energy differences for the halogen substituted molecules reported in this study are quite reliable.

There are few experimental results for the singlet-triplet gap reported for CHX and CX₂ molecules (X=halogen). From the detailed analysis of the photoelectron spectrum of CHF it was suggested that the triplet excitation energy is 11.4 ± 0.3 , 14.7 ± 0.2 , or 8.1 ± 0.4 kcal mol⁻¹, with the first value the most likely.¹⁵⁾ The theoretical results shown in Table 1 indicate that the experimental value 14.7 ± 0.2 kcal mol⁻¹ appears to be correct, but the value 11.4 ± 0.2 kcal mol⁻¹ cannot be ruled out. The triplet excitation energy of CHCl was reported by Murray et al.¹⁵⁾ to be $(11.4\pm0.3)-n(2.5\pm0.2)$ kcal mol⁻¹. The theoretical results calculated by us and by others^{8c,9)} shown in Table 1 suggest that the correct value is either 3.9 ± 0.9 or 6.4 ± 0.7 kcal mol⁻¹.

A comparison with the theoretical results using density functional theory (DFT) is very interesting.¹¹⁾ The singlet–triplet gap calculated at the DFT level is slightly too small for CF₂, but it is larger for CCl₂, CBr₂, and CI₂ than calculated here. Because our values for CCl₂ and CHBr agree very well with other high level ab initio calculations, we think that the excitation energies for CBr₂ and CI₂ predicted here are probably correct. This means that the singlet–triplet gap using the local density approximation (LDA) is slightly too large for CCl₂, CBr₂ and CI₂, and that the nonlocal exchange correction (NL) even worsens the results.¹¹⁾

Now we discuss the relative energies of the ¹A₁ and ${}^{3}B_{1}$ states of the nitrenium ions. Table 1 shows that the calculated $({}^{1}A_{1})\leftarrow({}^{3}B_{1})$ excitation energy for NH_2^+ (33.5 kcal mol⁻¹) is 3.4 kcal mol⁻¹ higher than found by experiment (30.1 kcal mol⁻¹), similar to the results calculated for CH₂. As for methylene, halogen substitution in $\mathrm{NH_2}^+$ yields a ($^1\mathrm{A}_1$) ground state for NHX⁺ and NX₂⁺ ions. While the singlettriplet gap for NH₂⁺ is clearly larger than for CH₂, the calculated excitation energies $({}^{3}B_{1})\leftarrow({}^{1}A_{1})$ for the corresponding halogen substituted analogues CX2 and NX_2^+ are nearly the same (Table 1). The theoretically predicted singlet-triplet gap for NF₂⁺ is 57.3 $kcal mol^{-1}$ (57.6 $kcal mol^{-1}$ for CF_2), for NCl_2^+ it is $19.8 \text{ kcal mol}^{-1} (20.5 \text{ kcal mol}^{-1} \text{ for CCl}_2, \text{ for NBr}_2^+ \text{ it}$ is $16.3 \text{ kcal mol}^{-1} \text{ (}16.5 \text{ kcal mol}^{-1} \text{ for } \text{CBr}_2\text{)}, \text{ and for }$ NI_2^+ it is 11.3 kcal mol⁻¹ (11.2 kcal mol⁻¹ for CI_2).

Slightly different singlet—triplet gaps are predicted for the mono halogen ions NHX⁺ than for CHX. Table 1 shows that for NHF⁺ a lower excitation energy (8.1 kcal mol⁻¹) is predicted than for CHF (14.3 kcal mol⁻¹), while the values for NHCl⁺ (4.1 kcal mol⁻¹) and CHCl (4.8 kcal mol⁻¹) are very similar. The singlet—triplet gaps calculated for NHBr⁺ (6.4 kcal mol⁻¹) and NHI⁺ (7.5 kcal mol⁻¹) are larger than for CHBr (4.4 kcal mol⁻¹) and CHI (2.6 kcal mol⁻¹). NHBr⁺ and NHI⁺ are predicted to be exceptions from the rule that the (${}^{3}B_{1}$)—(${}^{1}A_{1}$) excitation energy of molecules AHX and AX₂ decreases with decreasing electronegativity of the terminal atoms. There are no experimental results available for halogen substituted nitrenium ions to com-

Table 1. Theoretically Predicted and Experimentally Derived Energy Differences (kcal mol⁻¹) between the Lowest Lying ¹A₁ and ³B₁ States

Negative Values Indicate That the ³B₁ State is the Ground State.

	HF/6- 311G(2df)	MP2/6- 311G(2df)	MP3/6- 311G(2df)	MP4/6- 311G(2df)	MP4/6- 311G(2df) +ZPE	Exp.	Calco CCCl/l		Calcd ^{b)} TCSCF +Cl	Calc DFT I LDA	LDA,	Calcd (other)
$\overline{\mathrm{CH_2}}$	-28.4	-16.5	-14.1	-13.4	-12.9	-8.9989.023 ^d)	-10.0,	-9.0		-12.22,	-7.20	-9.1 ^{c)}
CF_2	32.2	53.8	53.1	57.6	57.6	$56.7^{\rm f}$, $>50.8^{\rm g}$	57.1,			55.8,	55.6	
CCl_2	-5.2	17.2	15.6	20.2	20.5	, -	25.9,			21.91,		
CBr_2	10.5	13.0	10.5	16.7	16.5		,			20.89,		$7.7^{\rm b)}$
Cl_2	-18.2	7.0	3.1	11.5	11.2					15.73,	16.49	
CHF	-6.1	10.4	11.3	14.3	14.3	14.7; 11.4; 8.1 ^{g)}	14.5,	17.7	13.2			
CHCl	-15.7	1.5	2.0	4.8	4.8	<11.4 ^{g)}	9.3,	6.0	5.4			
CHBr	-17.0	0.7	1.0	4.3	4.4	<9.g)	ŕ		4.1			
CHI	-19.9	-1.4	-1.5	2.6	2.6	<9. ^{g)}						
$\mathrm{NH_2}^+$	-50.4	-36.6	-34.1	-32.9	-33.5	$-30.1^{\mathrm{i})},\ -22.8^{\mathrm{\ i})}$						-33.2, ^{k)} -29.7, ^{l)} -45. ^{m)}
NF_2^+	19.8	54.5	46.4	57.8	57.3							33. ^{m)}
NCl_2^+	-15.3	19.4	11.5	20.1	19.8							
NBr_2^+	-23.3	16.0	5.3	17.1	16.3							
NI_2^+	-31.4	11.2	-2.2	12.0	11.3							
NHF^+	-19.8	4.6	1.9	8.7	8.1							-4. ^{m)}
NHCl+	-23.9	2.7	-1.0	4.6	4.1							
NHBr ⁺	-25.9	4.9	-0.5	7.0	6.4							
NHI^{+}	-29.1	6.4	-1.3	8.0	7.5							

a) Ref. 8. b) Ref. 9. c) Ref. 11. d) Ref. 2. e) Ref. 3. f) Ref. 14. g) Ref. 15. h) Ref. 10. i) Ref. 19. j) Ref. 44. k) Ref. 24. l) Ref. 21. m) Ref. 28.

Table 2. Calculated Total Energies (a.u.) for the ¹A₁ State Using Geometries Opitimized at the MP2/6-31G(d) Level with ECP's for Br, I

		E	Etot	
	$\mathrm{HF}/6\text{-}311\mathrm{G}(2\mathrm{df})$	MP2/6-311G(2df)	MP3/6-311G(2df)	MP4/6-311G(2df)
CH_2	-38.88652	-39.01080	-39.03080	-39.03656
CF_2	-236.73872	-237.6448	-237.36378	-237.39969
CCl_2	-956.7892	-957.28990	-957.32444	-957.35563
CBr_2	-63.63899	-64.09896	-64.11728	-64.16148
CI_2	-60.07882	-60.50080	-60.51200	-60.56322
$_{\mathrm{CHF}}$	-137.80031	-138.17567	-138.18529	-138.20723
CHCl	-497.84069	-498.15400	-498.18223	-498.20034
$_{ m CHBr}$	-51.26862	-51.55873	-51.57970	-51.60354
CHI	-49.48891	-49.75897	-49.77772	-49.80382
$\mathrm{NH_2}^+$	-55.14547	-55.28956	-55.30987	-55.31632
${ m NF_2}^+$	-252.81017	-253.49369	-253.48030	-253.53831
NCl_2^+	-972.99144	-973.55255	-973.57408	-973.62193
$\mathrm{NBr_2}^+$	-79.87482	-80.38701	-80.39932	-80.46459
${ m NI_2}^+$	-76.35887	-76.84834	-76.83707	-76.91137
NHF^+	-153.97786	-154.39462	-154.39719	-154.43104
NHCl ⁺	-514.08780	-514.45196	-514.47095	-514.50002
NHBr^{+}	-67.53018	-67.88037	-67.88863	-67.92701
NHI ⁺	-65.77466	-66.1131	-66.11535	-66.16005

pare our theoretical excitation energies. In the light of the rather high $({}^{3}B_{1})\leftarrow({}^{1}A_{1})$ excitation energy predicted for NF₂⁺ it seems questionable, however, that a triplet state of NF₂⁺ is indeed involved in the reaction of NF₂⁺ with CH₄ yielding CH₄NF⁺ as suggested by Fisher and McMahon.²⁷⁾

The only previous theoretical study on the singlettriplet gap in substituted nitrenium ions was carried out at the SCF level with assumed N–F distances for NHF⁺ and NF₂⁺ by Harrison and Eakers.²⁸⁾ It was predicted that NF₂⁺ has a singlet ground state, 33 kcal mol⁻¹ below the triplet state, and that NHF⁺ has a triplet ground state 4 kcal mol⁻¹ below the singlet.²⁸⁾ This early study may not be very reliable due to the limited theoretical methods available at that time.

Table 3 shows the optimized geometries in com-

Table 3. Theoretically Predicted MP2/6-31G(d) and Experimentally Observed Geometries Interatomic Distances AB in Å, Angles ω in Degree.

			Ca	lcd			Exptl						
	$^{-1}A_1$			$^{3}\mathrm{B}_{1}$			$^{1}A_{1}$			$^3\mathrm{B}_1$			
	C/N-X	C/N-H	ω	C/N-X	C/N-H	ω	C/N-X	C/N-H	ω	C/N-X	C/N-H	ω	
CH_2		1.109	102.1		1.078	131.5		1.11 ^{a)}	102.4 ^{a)}		$1.0748^{\rm b)}$	133.84 b)	
CF_2	1.315		104.2	1.329		119.8	$1.3035^{c)}$		$104.8^{c)}$				
CCl_2	1.718		109.9	1.679		127.6	$1.715^{ m d})$		$109.2^{d)}$				
CBr_2	1.893		111.0	1.840		129.9	$1.74^{ m e)}$		$114.^{e)}$	$1.74^{ m e)}$		$150.^{e)}$	
CI_2	2.105		112.6	2.034		132.3							
$_{\mathrm{CHF}}$	1.320	1.121	101.9	1.329	1.086	121.2	$1.305^{\rm f}$	$1.138^{f)}$	$104.1^{f)}$				
CHCl	1.697	1.110	102.9	1.670	1.082	125.8	$1.696^{g)}$	$1.130^{g)}$	$101.4^{ m g)}$				
CHBr	1.862	1.110	101.9	1.827	1.082	126.5							
CHI	2.068	1.111	101.3	2.018	1.084	128.2							
$\mathrm{NH_2}^+$		1.049	108.3		1.034	151.1							
NF_2^+	1.258		107.6	1.270		124.8							
NCl_2^+	1.608		117.3	1.582		137.0							
$\mathrm{NBr_2}^+$	1.771		118.9	1.734		140.4							
$\mathrm{NI_2}^+$	1.946		122.1	1.902		147.5							
NHF^+	1.246	1.055	104.2	1.245	1.055	125.4							
NHCl ⁺	1.549	1.045	109.1	1.524	1.037	134.1							
NHBr^{+}	1.704	1.042	107.9	1.669	1.033	134.5							
NHI^{+}	1.877	1.040	108.0	1.830	1.029	136.1							

a) Ref. 56. b) Ref. 46. c) Ref. 61d. d) Ref. 55. e) Ref. 41. f) Ref. 58. g) Ref. 59.

parison with experimental results for CHX and CX2 molecules. There are no experimental geometries available for the nitrenium ions. We discuss the results for the carbenes first in order to estimate the accuracy of the predicted geometries. Generally, the agreement with experiment is quite good. The calculated bond lengths and bond angles for the ³B₁ and ¹A₁ states of CH₂ and the ¹A₁ state of CF₂, CCl₂, CHF, and CHCl are very similar to the experimental values. The C-F distances in CF₂ and CHF are calculated too long by 0.01—0.015 Å. In case of CBr₂, however, we think that the rather crude estimates of the bond lengths and angles taken from experiment⁴¹⁾ are probably not correct. The calculated geometries for the 3B_1 and 1A_1 states of CBr₂ agree well with previous theoretical results. 10,11) The calculated data shows the following trends for the methylenes: (i) the bond angle of the ³B₁ state is always larger than the angle of the corresponding ¹A₁ state; (ii) the bond angle of the halogen substituted methylenes CHX and CX₂ increases with the order F<Cl<Br<I, except for the ¹A₁ state of CHX which shows a rather constant bond angle; (iii) the C-X bond in the ³B₁ state is longer than in the ¹A₁ state for CF₂, but shorter for the other CHX and CX₂ molecules.

The same trends (i)—(iii) calculated for the methylenes are also predicted for the nitrenium ions (Table 3). The bond angles are larger for the nitrenium ions than for the respective carbenes. This holds particularly for the (3B_1) ground state of NH_2^+ . Experimental studies by Okumura et al.⁴²⁾ suggest that NH_2^+ is quasilinear, but the estimated bending angle of 165° was

probably too large because of the large amplitude of the bending vibration. The bond angle calculated here (151.1°) is in good agreement with previous theoretical studies by Peyerimhoff and Buenker, ²¹⁾ who predict ω (NH₂+)=149.6°, and by Jensen et al. ⁴³⁾ predicting ω (NH₂+)=153.2°. The N–F bond length calculated for (1 A₁) NF₂+ (1.258 Å) is nearly the same as predicted by Peterson et al. ²⁵⁾ using CASSCF methods (1.255 Å). The theoretically predicted geometries for NHX+ and NX₂+ ions shown in Table 3 may serve as a guideline for future experiments.

Table 4 shows the calculated harmonic vibrational frequencies and IR intensities for the methylenes and nitrenium ions in comparison with experimentally reported values. It is well known that the vibrational frequencies calculated using the harmonic approximation are usually too high by ca. 10% at this level of theory.³⁵⁾ In particular, the stretching modes are predicted with wave numbers which are too high. The results in Table 4 show that the theoretical frequencies for the carbenes in the ¹A₁ and ³B₁ state are always higher than experimentally observed. The shift of the vibrational frequencies upon substitution of the terminal atoms, however, is predicted quite reliably. The comparison of the theoretical frequencies with the available experimental results for the carbenes allows an estimate for the wave numbers of those fundamentals which have not been measured yet.

Experimental vibrational frequencies for $\mathrm{NH_2}^+$ have been reported for the ($^3\mathrm{B}_1$) ground state by Okamura et al. $^{42)}$ and for the $^3\mathrm{B}_1$ as well as several excited states

Table 4. Theoretically Predicted and Experimentally Observed Vibrational Frequencies (cm⁻¹) Calculated IR-Intensities (km mol⁻¹). Theoretical Values Calculated at MP2/6-31G(d) Using ECP's for Br, I.

						$^{1}A_{1}$			
			Calco	i	_	Exptl			
	$ \frac{\overline{\nu_{\mathrm{C/N-X}}}}{/\nu_{\mathrm{s}}} $	Int.	$ \frac{\nu_{\mathrm{C/N-H}}}{/\nu_{\mathrm{as}}} $	Int.	$ u_{ m bend}$	Int.	$ u_{\rm C/N-X}/ u_{\rm s} $	$ u_{ m C/N-H}/ u_{ m as}$	$ u_{ m bend}$
CH_2	3002	67.6	3086	111.1	1498	0.3	2806 ^{a)}	$2865^{\mathrm{a})}$	$1353^{\rm b)}$
CF_2	1278	107.9	1175	361.2	665	3.7	$1222 – 1234^{c)}$	$1102 - 1126^{\mathrm{d})}$	$663-670^{\rm e)}$
CCl_2	770	42.7	792	469.9	354	0.3	$720 - 721^{\mathrm{f}}$	$748^{ m g)}$	$327^{\mathrm{h})}$
CBr_2	618	23.4	665	413.3	206	0.6	$595^{\mathrm{i})}$		$196^{\mathrm{i})}$
CI_2	506	13.7	572	451.5	140	0.7			
$_{\mathrm{CHF}}$	1257	159.8	2879	186.1	1480	14.8	$1180-1182^{\mathrm{k,l})}$		$1405^{k)}$
CHCl	856	122.8	3001	90.2	1300	7.9	$810-815^{l,m}$		$1201^{m)}$
CHBr	706	84.6	3011	80.4	1219	3.5	$660^{1)}$		
CHI	599	77.3	3010	65.2	1132	2.4	$600^{1)}$		
$\mathrm{NH_2}^+$	3268	63.3	3380	196.2	1511	99.2	$2900^{\rm n}$		$1350^{n)}$
NF_2^+	1386	52.5	1361	389.8	725	8.3	$1250^{\mathrm{o})}$		
NCl_2^+	860	0.5	1010	516.4	408	0.0			
$\mathrm{NBr_2}^+$	681	0.0	871	554.8	248	0.1			
NI_2^+	575	3.4	801	696.3	177	0.4			
NHF^{+}	1508	44.5	3223	71.7	1569	123.7			
NHCl ⁺	1152	4.3	3305	85.3	1367	75.3			
$NHBr^{+}$	969	0.4	3335	79.3	1283	65.6			
NHI ⁺	883	10.9	3355	62.9	1210	58.3			

						$^3\mathrm{B}_1$			
			Calco	i	Exptl				
	$ \frac{\overline{\nu_{\mathrm{C/N-X}}}}{/\nu_{\mathrm{s}}} $	Int.	$ u_{ m C/N-H} $ $ / $	Int.	$ u_{ m bend}$	Int.	$ u_{ m C/N-X}/ u_{ m s}$	$ u_{ m C/N-H}/ u_{ m as}$	$ u_{ exttt{bend}}$
CH_2	3248	1.4	3469	0.5	1195	6.8	$2992^{p)}$	$3213^{rmp)}$	
CF_2	1171	52.1	1363	272.6	509	9.1			
CCl_2	723	6.6	1044	224.7	315	0.2			
$\mathrm{CBr_2}$	546	1.3	897	168.5	194	0.0			
$\mathrm{CI_2}$	431	0.0	802	140.6	136	0.2			
$_{ m CHF}$	1302	85.8	3247	10.0	1165	35.6	$1170^{1)}$		$1170^{1)}$
CHCl	992	53.4	3306	8.6	1052	0.7	$870^{1)}$		
$_{ m CHBr}$	763	28.3	3303	6.4	975	2.2			
$_{\mathrm{CHI}}$	659	16.1	3294	5.8	911	5.0			
$\mathrm{NH_2}^+$	3328	49.5	3592	663.4	794	174.8		$3359.9^{ m q}{}^{ m)}$	$840^{n)}$
$\mathrm{NF_2}^+$	1194	20.3	1372	256.9	561	10.4			$520^{\mathrm{o})}$
NCl_2^+	718	0.0	1048	526.2	353	0.7			
$\mathrm{NBr_2}^+$	506	0.2	885	602.5	220	1.3			
$\mathrm{NI_2}^+$	357	2.4	786	811.8	148	2.9			
NHF^+	1505	112.7	3202	337.2	1120	127.9			
NHCl ⁺	1145	82.9	3414	347.0	929	202.4			
NHBr^{+}	937	74.7	3456	348.2	812	265.0			
NHI ⁺	798	101.8	3508	343.1	674	358.5			

a) Ref. 60. b) Ref. 56. c) Ref. 61. d) Refs. 61f and 61g. e) Refs. 62, 61a, 61d, and 61f. f) Ref. 63.

of NH₂⁺ by Dunlavy et al.⁴⁴⁾ Table 4 shows that the (unscaled) theoretical vibrations for the fundamentals of NH₂⁺ show a similar agreement with experiment than for CH₂. The only experimentally reported vibrational frequencies for halonitrenium ions are available for NF₂⁺. The calculated frequencies for the symmet-

ric and asymmetric NF stretching mode are higher than in ($^{1}A_{1}$) CF₂ (Table 4). This is in agreement with the measured value of 1250 cm⁻¹ for the symmetric stretching mode of ($^{1}A_{1}$) NF₂⁺ as reported by Cornford et al.,⁴⁵⁾ which is higher than the observed⁴⁶⁾ symmetric stretching mode (1222—1234 cm⁻¹) for CH₂. The same

g) Refs. 63 and 64. h) Ref. 65. i) Ref. 66. j) Ref. 67. k) Ref. 68. l) Ref. 15. m) Ref. 69.

n) Ref. 44. o) Ref. 45. p) Ref. 70. q) Ref. 42.

authors also reported vibrational intervals for the 3B_1 state of NF₂⁺ at 520 cm⁻¹, which they assign to the N–F stretching mode in this state assuming a significantly weaker N–F bond than in the ground state.⁴⁵⁾ Our calculations agree that the N–F bond in the 3B_1 state of NF₂⁺ is longer than in the 1A_1 state. However, the theoretically predicted frequency for the symmetric stretching mode for (3B_1) NF₁⁺ is 1194 cm⁻¹, which is too high to support the assignment of the observed vibrational intervals at 520 cm⁻¹ to the stretching vibration (Table 4). The observed value of 520 cm⁻¹ is in much better agreement with the calculated bending mode at 561 cm⁻¹.

Why is the $(^{1}A_{1})$ \leftarrow $(^{3}B_{1})$ excitation energy of NH₂⁺ significantly higher than for CH₂, while the singlet-triplet gap of the halogen substituted nitrenium ions is nearly the same as for the respective methylene? This surprising result can be explained using frontier orbital arguments⁴⁷⁾ and Mulliken-Walsh type diagrams.⁴⁸⁾ Figure 1 shows a schematic representation of the valence orbitals of AH₂ molecules and the change of the energy levels upon bending.

For linear AH₂ molecules with six valence electrons such as CH₂ and NH₂⁺ the $1\sigma_{\rm g}$ and $1\sigma_{\rm u}$ valence MOs are doubly occupied in the ground state and the degenerate $\pi_{\rm u}$ MO is occupied by two electrons with the same spin, yielding a $^3\Sigma_{\rm g}^{-}$ state. Upon bending, the $\pi_{\rm u}$ MO is split into the 1b₁ (π) MO and the 2a₁ MO (Fig. 1).

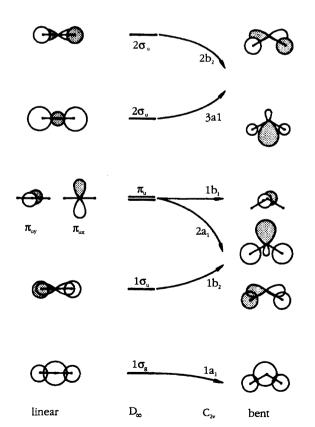


Fig. 1. Schematic representation of the most important valence orbitals of AH₂ molecules.

The energy level of the 1b₁ MO does not change upon bending, but the 2a₁ orbital becomes lower in energy when the bond angle becomes smaller. If the energy gap between the 1b₁ and 2a₁ MO is large enough to compensate for the exchange term, the ¹A₁ state with a doubly occupied 2a₁ MO becomes the ground state. It follows that the ¹A₁ states of CH₂ and NH₂⁺ should have smaller bond angles than the ³B₁ states. This is indeed the case (Table 1). The energy lowering of the 2a₁ orbital of AH₂ is due to the mixing of the 2a₁ and 3a₁ MOs, which raises the energy of the latter orbital. The mixing becomes more important the higher the energy of the 2a₁ and the lower the energy of the 3a₁ MO. Because nitrogen is more electronegative than carbon, the 2a₁ MO is lower lying in NH₂⁺ than in CH₂, and the $2a_1-3a_1$ mixing therefore weaker in the former than in the latter molecule. As a consequence, the energy gap between the 2a₁ and 1b₁ MOs is smaller and the singlet-triplet gap and the bonding angles are larger in NH₂⁺ than CH₂ (Tables 1 and 2). In particular, the bonding angle in (³B₁) NH₂⁺ (151.1°) is significantly larger than in $(^{3}B_{1})$ CH₂ (131.5°) .

What about the halogen substituted systems CX₂ and NX₂⁺? Figure 2 shows schematically the most important valence orbitals for the system AB₂. In the 18 valence electron systems CX₂ and NX₂⁺, the degenerate $2\pi_u$ orbital is occupied by two electrons. Upon bending, the $2\pi_u$ MO splits into the $4a_1$ and $2b_1$ MOs (Fig. 2). Unlike the $1\pi_u$ orbital of AH₂, however, both components of the $2\pi_u$ MO of AB₂, i.e. the $4a_1$ and $2b_1$ MOs, are stabilized upon bending, though to a different extent. The 2b₁ orbital becomes slightly lower in energy because of the in-phase π -type overlap of the terminal p orbitals. The 4a₁ orbital is lowered due to the mixing with the 5a₁ orbital (Fig. 2). Since the 2b₁ orbital of CF₂ and NF₂⁺ is stabilized upon bending, the ³B₁ states of these molecules with a singly occupied 2b₁ MO have significantly smaller angles (119.8° for CH₂, 124.8° for NF₂⁺) than the ³B₁ states of CH₂ and NH₂⁺ (131.5°

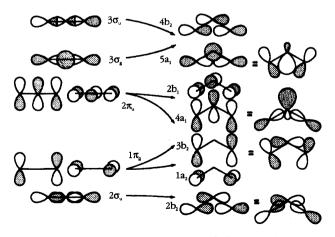


Fig. 2. Schematic representation of the most important valence orbitals of AB₂ molecules.

for CH₂, 151.1° for NF₂⁺). The mixing of the 4a₁ and 5a₁ orbitals in NX₂⁺ is weaker than in CX₂, similar to the 2a₁-3a₁ orbital mixing in CH₂ and NH₂⁺. However, since the 2b₁ orbital in CF₂ and NF₂⁺ is also lowered upon bending, the $({}^{3}B_{1})\leftarrow({}^{1}A_{1})$ excitation energy is less influenced by the different electronegativity of the central atom. Another difference between the AH₂ and AB_2 systems is, that the $2\pi_u$ MO in linear AB_2 has large coefficients at the terminal atoms, whereas the π_u MO of AH₂ has not (Figs. 1 and 2). The 4a₁-5a₁ mixing in CF₂ and NF₂⁺ involves mainly coefficients of the same atom type, i.e. the terminal fluorine atoms, whereas the 2a₁-3a₁ mixing in CH₂ and N₂⁺ is dominated by the coefficient of the central atom, which is different in the two molecules. Thus, the differences between the ¹A₁ and ³B₁ states of CF₂ and NF₂⁺ are much smaller than for CH₂ and NH₂⁺. Table 1 shows that this holds true for all molecules CX_2 compared with NX_2^+ .

We investigated the electronic structure of the carbenes and nitrenium ions using the topological analysis of the electronic wave functions developed by Bader and coworkers.²⁹⁾ This method has been found in our previous theoretical studies on inorganic molecules¹⁾ to give valuable information about the bonding and charge distribution in these molecules. A very detailed topological analysis of the electronic structures of carbenes including CH₂ and CF₂ in the ¹A₁ and ³B₁ states has already been presented by MacDougall and Bader^{49a)} and by Gatti et al.^{49b)} Because other theoretical studies of halogen substituted carbenes^{8—11)} focussed mainly on the singlet—triplet gap and spectroscopic properties of the molecules without analyzing the wave function, we also discuss these molecules in detail.

The contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$ for the investigated molecules in the molecular plane are shown in Figs. 3 and 4. The results of the topological analysis of the wave functions are listed in Table 5. The calculated atomic partial charges obtained by numerical integration of the electron density in the atomic basins separated by the zero-flux surfaces are shown in Table 6.

The Laplacian distribution exhibited in Figs. 3 and 4 shows regions of electon depletion $(\nabla^2 \rho(\mathbf{r}) > 0$, dashed lines) and electron concentration $(\nabla^2 \rho(\mathbf{r}) < 0$, solid lines). The solid lines connecting the atomic nuclei are the bond paths.²⁹⁾ The solid lines separating the nuclei indicate the zero-flux surfaces in the molecular plane. The points where the solid lines are crossing between the atoms are the bond critical points $r_{\rm b}$.²⁹⁾ The position of r_b relative to the "non-polar midpoint" of a bond A-B may be used to define the effective electronegativity of the bonded atoms. 1) If A and B are identical, the midpoint is simply the half of the calculated interatomic distance. If A and B are different, the sum of the atomic radii α_A and α_B , corrected by the actual interatomic distance r_{AB} , may be used to define the "non-polar" midpoint of the A-B bond. If for the carbene bonds C-

X the latter is given by its distance to the carbon atom $m_{\rm C}$, we defined the nonpolar midpoint $m_{\rm C}$:

$$m_{\rm C} = \alpha_{\rm C} \times r_{\rm CX} \times (\alpha_{\rm C} + \alpha_{\rm X})^{-1}$$
,

 $m_{\rm C}$ =distance of the "non-polar" midpoint from atom C.

 $a_{\rm C}$ =atomic radius of C in C–C single bond, $a_{\rm X}$ =atomic radius of X in X–X single bond, $r_{\rm CX}$ =calculated interatomic distance C–X.

For the nitrenium ions NHX⁺ and NX₂⁺ the corresponding equation holds with N for C. The atomic radii for the atoms were taken from the literature.⁵⁰⁾

The shift $\Delta r_{\rm b}$ from the "non-polar" midpoint of a bond A–B can then be taken as a measure for the effective electronegativity of the atoms.¹⁾ Alternatively, the calculated partial charges of the atoms A and B may be used to define the relative electronegativity as suggested by Bader.⁵¹⁾ However, the integration involves all electrons of an atom, not only the electronic charge in the bond A–B. The partial charges in CO and CF calculated by Bader⁵¹⁾ would suggest that oxygen is more electronegative than fluorine, because the carbon atom carries a larger positive charge in the former molecule than in the latter. Since fluorine is definitely more electronegative than oxygen, the use of atomic charges as a measure of electonegativity is not very useful.

The shift in the bond critical point $\Delta r_{\rm b}$ shown in Table 5 for the carbenes is given by the distance between $r_{\rm b}$ and $m_{\rm C}$ for the C-X (C-H) bond, with negative (positive) values indicating that r_b is shifted towards the carbon (X) atom. A shift of the bond critical point $r_{\rm b}$ towards the carbon end of the C-X bond means that a larger area of the bond is attributed to the (more electonegative) atom X. Table 5 shows that the C-H, C-F, and C-Cl bonds in the ¹A₁ and ³B₁ states of CH_2 , CHX, and CX_2 have negative values for Δr_b . This means that F, Cl, and H are more electronegative in the corresponding C-X bonds than carbon. The higher electronggativity of hydrogen in CH₂ does not mean that the partial charge at carbon is positive. Table 6 shows that the integration of the atomic space gives a slightly positive charge (+ 0.028) at hydrogen in the ${}^{1}A_{1}$ state and an even larger positive charge (+ 0.115) in the ${}^{3}\mathrm{B}_{1}$ state. The fluorine and chlorine atoms carry a negative partial charge in the corresponding carbenes, as expected. The calculated charge distribution for CH₂ and CF₂ is very similar to the results given by Bader and coworkers⁴⁹⁾. Generally, the carbon atom in the methylenes is more positively charged in the ¹A₁ state than in the ³B₁ state. A very interesting result of the topological analysis of the wave function is that the calculated charge distribution for the bromine substituted methylenes show a polarity $C(\delta-)$ -Br $(\delta+)$ for the C-Br bond (Table 6). Also the shift of the bond critical point $\Delta r_{\rm b}$ shows a lower electronegativity for bromine than for carbon (Table 5). The standard value for the

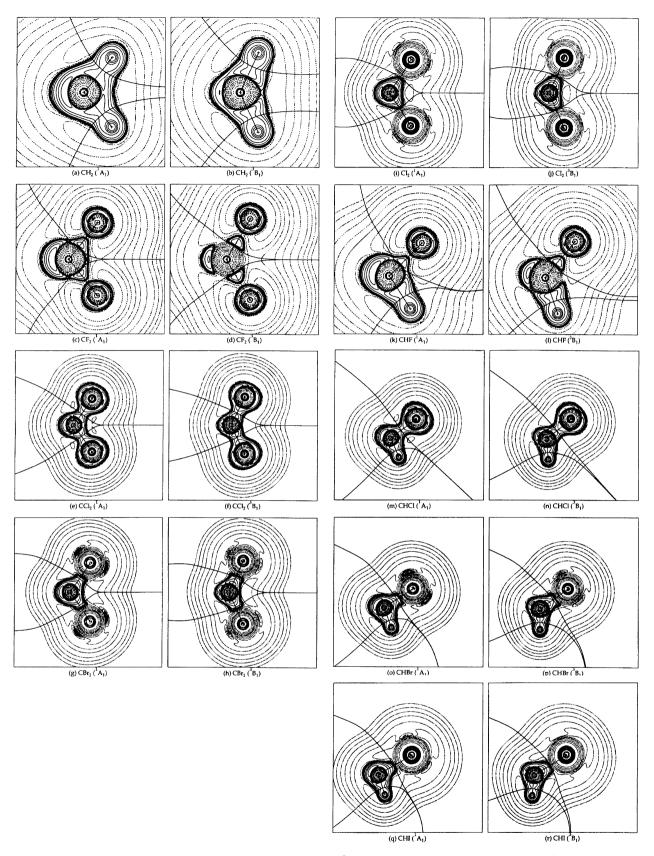


Fig. 3. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$ of the methylenes in the $^1\mathrm{A}_1$ and $^3\mathrm{B}_1$ states calculated at MP2/6-31G(d). Dashed lines indicate charge depletion $(\nabla^2 \rho(\mathbf{r}) > 0)$, solid lines indicate charge concentration $(\nabla^2 \rho(\mathbf{r}) < 0)$. The solid lines connecting the atomic nuclei are the bond paths, the solid lines separating the atomic nuclei indicate the zero-flux surfaces in the molecular plane.

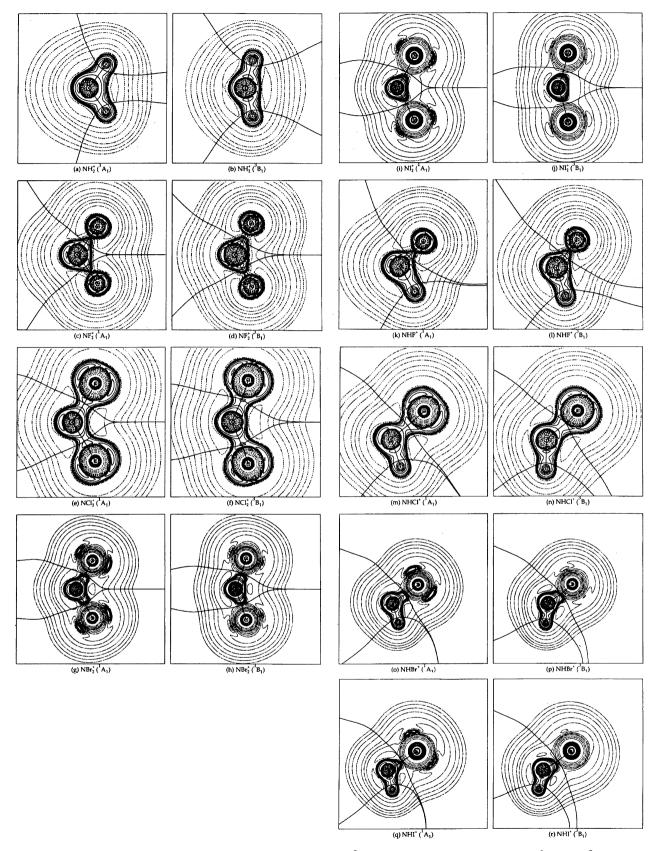


Fig. 4. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(r)$ of the nitrenium ions in the 1A_1 and 3B_1 states calculated at MP2/6-31G(d). For details see Fig. 3.

Table 5. Results of the Topological Analysis at MP2/6-31G(d) Using ECP's for Br and I Charge Density at the Bond Critical Point $\rho_b(e/Å^3)$; Energy Density at the Bond Critical Point H_b (Hartree/ų); Location of the Bond Critical Point r_{bl} for the Bond A–B Given by A- r_b/A –B; Shift of the Bond Critical Point Relative to the "Non-Polar-Midpoint" as Defined in the Text $\Delta r_b(Å)$; Ellipticity at the Bond Critical Point Parallel $\varepsilon_b \parallel$ and Perpendicular $\varepsilon_b \perp$ to the Molecular Plane.

					$(^{1}A_{1})$		· · · · · · · · · · · · · · · · · · ·			
			C/N-X		(111)			C/N-H		
	$ ho_{ m b}$	$H_{ m b}$	$r_{ m b}$	$\Delta r_{ m b}$	$arepsilon_{ m b}$	$ ho_{ m b}$	$H_{ m b}$	$r_{ m b}$	$\Delta r_{ m b}$	$arepsilon_{ m b}$
CH_2						1.836	-1.856	0.649	-0.079	0.133
CF_2	1.849	-2.666	0.322	-0.294	$0.346 \ $					
CCl_2	1.424	-1.113	0.427	-0.017	0.019					
CBr_2	1.080	-0.695	0.460	0.108	0.028					
CI_2	0.803	-0.418	0.475	0.227	$0.050 \pm$					
CHF	1.748	-2.402	0.321	-0.298	$1.288 \ $	1.856	-1.863	0.656	-0.076	$0.038\ $
CHCl	1.451	-1.221	0.413	-0.041	0.124	1.869	-1.923	0.657	-0.070	$0.061\ $
CHBr	1.134	-0.769	0.451	0.090	$0.021 \parallel$	1.869	-1.917	6.659	-0.067	$0.063\ $
CHI	0.857	-0.486	0.472	0.218	$0.031 \bot$	1.849	-1.890	0.659	-0.067	$0.069\ $
$\mathrm{NH_2}^+$						2.072	-2.942	0.788	0.092	0.043
NF_2^+	2.855	-3.928	0.419	-0.130	$0.047 \bot$					"
NCl_2^+	1.795	-1.795	0.506	0.147	$0.095 \pm$					
$\mathrm{NBr_2}^+$	1.275	-0.925	0.510	0.229	$0.101 \pm$					
$\mathrm{NI_2}^+$	0.958	-0.526	0.498	0.297	$0.093 \pm$					
NHF^{+}	2.821	-4.272	0.398	-0.155	0.219	2.112	-3.016	0.785	0.089	0.002
NHCl ⁺	2.045	-2.315	0.506	0.142	0.117⊥	2.099	-2.956	0.776	0.079	0.010
NHBr^{+}	1.478	-1.235	0.507	0.216	$0.118 \pm$	2.105	-2.949	0.771	0.074	0.009
NHI^{+}	1.113	-0.709	0.494	0.280	$0.110 \bot$	2.099	-2.922	0.765	0.068	0.006
					.0 .					
			C/N-X		$(^{3}B_{1})$			C/N-H		
	$ ho_{ m b}$	$H_{ m b}$	$r_{ m b}$	$\Delta r_{ m b}$	$arepsilon_{ m b}$	$ ho_{ m b}$	$H_{ m b}$	$r_{ m b}$	$\Delta r_{ m b}$	$arepsilon_{ m b}$
CH_2		0	- 0			1.856	-1.964	0.653	-0.072	0.033⊥
CF_2	1.775	-2.510	0.324	-0.295	$0.931 \pm$	1.000	-1.304	0.000	-0.012	0.0551
CCl_2	1.498	-1.221	0.431	-0.010	$0.104 \bot$					
CBr_2	1.147	-0.790	0.476	0.133	0.066⊥					
CI_2	0.864	-0.486	0.488	0.246	$0.045 \pm$					
CHF	1.721	-2.375	0.323	-0.297	$0.324 \pm$	1.842	-1.944	0.659	-0.066	$0.082 \pm$
CHCl	1.518	-1.289	0.421	-0.027	0.082⊥	1.842	-1.944	0.660	-0.064	0.052⊥
CHBr	1.188	-0.837	0.471	0.124	0.058⊥	1.842	-1.944	0.661	-0.064	0.050⊥
CHI	0.898	-0.526	0.488	0.245	$0.045 \bot$	1.836	-1.930	0.660	-0.064	$0.041 \bot$
$\mathrm{NH_2}^+$						1.964	-2.747	0.797	0.101	0.004⊥
NF_2^+	2.713	-3.408	0.432	-0.115	$0.151 \bot$	1.304	-2.141	0.131	0.101	0.0041
NCl_2^+	1.768	-3.408 -2.065	0.432 0.549	-0.113 0.213	0.131±					
NCl_2 NBr_2 ⁺	1.768 1.262	-2.065 -0.898	0.549 0.523	0.213 0.248	0.038⊥ 0.024⊥					
NI_2^+	0.945	-0.898 -0.452	0.523 0.503	0.248 0.300	0.024⊥ 0.018⊥					
NHF^+	$\frac{0.945}{2.841}$	-0.432 -4.103	0.303 0.409	-0.141	0.018⊥	1.829	-2.531	0.797	0.103	0.021⊥
NHCl ⁺	2.041 2.031	-3.010	0.409 0.591	-0.141 0.270	0.083⊥	1.930	-2.551 -2.659	0.797	0.103	$0.021 \pm 0.010 \pm$
NHO1 NHBr ⁺	1.491	-3.010 -1.242	0.591 0.523	0.270 0.237	0.070±	1.964	-2.706	0.790	0.093	0.010±
NHI ⁺	1.134	-0.634	0.501	0.287	$0.032 \pm$	1.991	-2.740	0.781	0.083	$0.005 \bot$

electronegativity of bromine suggested by Pauling⁵²⁾ is higher (2.8) than for carbon (2.5), but it is known that the electronegativity is strongly influenced by the hybridization.

Visual inspection of the contour line diagrams exhibited in Fig. 3 shows characteristic differences among the methylenes. The C–H and C–Cl bonds are characterized by a continuous area of electron concentration, while

the C–F bonds in CHF and CF₂ show that the electron distribution of the fluorine atoms is much less distorted than that of the carbon atom. Electronic charge at Br and I is largely depleted, which agrees with the calculated positive partial charges.

Further details about the bonding in the carbenes is given by the calculated ellipticity ϵ_b and the energy density at the bond critical point H_b (Table 5). The latter

Table 6. Calculated Partial Charges at MP2/6-31G(d)

		$(^{1}A_{1})$			$(^{3}B_{1})$	
	C/N	X	Н	C/N	X	Н
$\overline{\mathrm{CH_2}}$	-0.056		0.028	-0.230		0.115
CF_2	1.364	-0.682		1.258	-0.629	
CCl_2	0.242	-0.121		0.170	-0.085	
CBr_2	-0.030	0.015		-0.196	0.098	
Cl_2	-0.368	0.184		-0.596	0.298	
$_{\mathrm{CHF}}$	0.635	-0.653	0.018	0.510	-0.656	0.146
CHCl	0.097	-0.152	0.055	-0.015	-0.138	0.153
$_{\mathrm{CHBr}}$	-0.057	-0.010	0.067	-0.207	0.053	0.154
$_{\mathrm{CHI}}$	-0.248	0.177	0.071	-0.423	0.272	0.151
$\mathrm{NH_2}^+$	-0.138		0.569	-0.284		0.642
$\mathrm{NF_2}^+$	1.164	-0.082		1.096	-0.048	
NCl_2^+	-0.204	0.602		-0.378	0.689	
$\mathrm{NBr_2}^+$	-0.470	0.735		-0.572	0.786	
$\mathrm{NI_2}^+$	-0.864	0.932		-0.950	0.975	
NHF^{+}	0.520	-0.067	0.547	0.449	-0.104	0.655
NHCl ⁺	-0.327	0.815	0.512	-0.561	0.946	0.615
NHBr^{+}	-0.504	1.010	0.494	-0.608	1.013	0.595
NHI ⁺	-0.749	1.278	0.471	-0.867	1.297	0.570

property has been shown to correlate with the covalency of the corresponding bond, with negative values indicating a covalent bond, while a value of $H_b\approx 0$ suggest closed-shell interaction typical for ionic bonds or van der Waals interactions.⁵³⁾ The calculated H_b values for the C–H and C–X bonds indicate a covalent character for all bonds. The covalency of the C–X bond decreases with the order F>Cl>Br>I. The covalency is slightly higher in the 3B_1 state than in the corresponding 1A_1 state, with exception of CF₂ (Table 5).

The final property listed in Table 5 is the bond ellipticity ϵ_b defined as $\epsilon_b = (\lambda_1/\lambda_2 - 1)$ where λ_1 and λ_2 are the magnitudes of the two negative curvatures of ρ at the bond critical point r_b with $|\lambda_1| > |\lambda_2|$. When these two curvatures are not equal, the charge density of the covalent bond is accumulated in the plane containing the curvatures corresponding to λ_2 . For example, the charge density of the C-C bond in ethylene is accumulated in the plane perpendicular to the molecular plane corresponding to the π bond. Table 5 shows that the charge of the C-H and C-X bonds of the ³B₁ state of the methylenes is always accumulated in the plane perpendicular (\perp) to the molecular plane. A large ϵ_b (\perp) value is calculated only for the C-F bonds in CF₂ and CHF. This indicates a strong π contribution to the C-F bond in these two molecules, particularly for CF₂. The $\epsilon_{\rm b}$ values for the other C–X bonds are significantly smaller, i.e. the π contribution is weaker. Large $\epsilon_{\rm b}$ values are also calculated for the ${}^{1}\mathrm{A}_{1}$ ground state of CF_{2} and CHF. However, the charge of the C-F bonds is accumulated in the molecular plane and not in the perpendicular plane as in the ${}^{3}B_{1}$ state (Table 5). The ϵ_{b} (||) value of the C-F bond is much larger in CHF than in CF₂. The other C-X bonds show clearly smaller ϵ_b

values.

The difference in the ellipticity of the C–F bonds in the 1A_1 and 3B_1 state of CF₂ is demonstrated by the contour line diagrams of the Laplacian in the plane perpendicular to the C–F bond containing the bond critical point r_b (Fig. 5). In the 3B_1 state, the C–F bond shows charge accumulation typical for a π bond perpendicular to the molecular plane (Fig. 5a). This explains the large value of ϵ_b (\perp)=0.931 (Table 5). In the 1A_1 state the C–F bond has nearly axial symmetry, the accumulation of electronic charge is higher in the molecular plane and higher on the "inside" of the molecule (Fig. 5b).

Now we discuss the results of the topological analysis for the nitrenium ions. The results of the topological analysis listed in Table 5 show that only for the N-F bonds the shift of the bond critical point $\Delta r_{\rm b}$ is calculated with a negative value, i.e. the other atoms are less electronegative than nitrogen. The numerical values show the same trend as for the methylenes. The nitrogen atoms carry a negative partial charge in all cations, with exception of the NHF+ and NF2+ ions (Table 6). The N-X bonds of the nitrenium ions are more covalent than the corresponding C-X bonds in the carbenes, as revealed by the more negative $H_{\rm b}$ values (Table 5). The ellipticity of the N-F bonds in NHF⁺ and NF₂⁺ in the ¹A₁ and ³B₁ state is lower than the C-F bonds in the corresponding methylenes. The halonitrenium ions in their ³B₁ state have N-H and N-X bonds with a small ellipticity $\epsilon_{\rm b}$ perpendicular to the molecular plane. For the ¹A₁ ground state of the halonitrenium ions a nearly constant value of ϵ_b (\perp) \approx 0.1 is calculated for the C-X bonds, with exception of the C-F bonds.

Summary

The electronic ground state of the nitrenium cation NH₂⁺ is theoretically predicted to have ³B₁ symme-

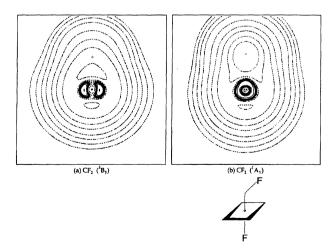


Fig. 5. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$ of CF₂ in the plane orthogonal to the C–F bond containing the bond critical point \mathbf{r}_b ; (a) $^3\mathrm{B}_1$ state; (b) $^1\mathrm{A}_1$ state.

try. The (¹A₁) first excited state is calculated to be 33.5 kcal mol⁻¹ higher in energy than the ground state, which is in reasonable agreement with the experimental value of 30.1 kcal mol⁻¹. The halogen substituted analogues NHX⁺ and NX₂⁺ (X=F, Cl, Br, I) have a ¹A₁ ground state. The singlet triplet gap is calculated as 57.3 kcal $\mathrm{mol^{-1}}$ for NF $_2$ ⁺, 19.8 kcal $\mathrm{mol^{-1}}$ for NCl $_2$ ⁺, 16.3 kcal $\mathrm{mol^{-1}}$ for NBr $_2$ ⁺ and 11.3 kcal $\mathrm{mol^{-1}}$ for NI_2^+ . The $(^3B_1)\leftarrow (^1A_1)$ excitation energy for the monohalogen species $\rm NHX^+$ is lower, 8.1 kcal $\rm mol^{-1}$ for $\rm NHF^+$, 4.1 kcal $\rm mol^{-1}$ for $\rm NHCl^+$, 6.4 kcal $\rm mol^{-1}$ for NHBr⁺ and 7.5 kcal mol⁻¹ for NHI⁺. The calculated singlet triplet gap for the isoelectronic methylenes CH₂, CHX, and CX₂ is in good agreement with experimental results. The $({}^{3}B_{1})\leftarrow({}^{1}A_{1})$ of NX_{2}^{+} is predicted to be nearly the same as for the corresponding methylenes. The theoretically predicted geometries for the carbenes are also in good agreement with experimental data. The calculated vibrational frequencies suggest a reassignment of the vibrational progression observed for (³B₁) NF₂⁺ at 520 cm⁻¹. The topological analysis of the electronic wave function shows that the nitrenium ions have more covalent bonds than the corresponding carbenes. A strong π contribution is analyzed only for the C-F bonds in CF₂ and CHF.

We thank Professor K. Dehnicke for initiating this study. This work has been supported by the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft. Additional support was provided by the HRZ Marburg, HLRZ Jülich, HHLR Darmstadt, and the computer companies Silicon Graphics and Convex.

References

- 1) Theoretical Studies of Inorganic Compound. Part III. Part I:M. Otto, S. D. Lotz and G. Frenking, *Inorg. Chem.*, **31**, 3647 (1992); Part II:A. Veldkamp and G. Frenking, *Chem. Ber.*, in press.
- 2) A. R. W. McKellar, P. R. Bunker, T. J. Sears, K. M. Evenson, R. J. Saykally, and S. R. Langhoff, *J. Chem. Phys.*, **79**, 5251 (1983); D. G. Leopold, K. K. Murray, and W. C. Lineberger, *J. Chem. Phys.*, **81**, 1048 (1984); D. G. Leopold, K. K. Murray, A. E. S. Miller, and W. C. Lineberger, *J. Chem. Phys.*, **83**, 4849 (1985); P. R. Buenker and T. J. Sears, *J. Chem. Phys.*, **83**, 4866 (1985).
- 3) E. A. Carter and W. A. Goddard, III, *J. Chem. Phys.*, **86**, 862 (1987).
- 4) C. W. Bauschlicher, S. R. Langhoff, and P. R. Taylor, J. Chem. Phys., **87**, 387 (1987).
- 5) C. L. Jansen and H. F. Schaefer, III, *Theor. Chim. Acta*, **79**, 1 (1991).
- 6) R. B. Murphy and R. P. Messmer, *Chem. Phys. Lett.*, **183**, 443 (1991).
- 7) H. F. Schaefer, III, *Science*, **231**, 1100 (1986); P. R. Bunker, in "Comparison of ab initio Quantum Chemistry with Experiment," ed by R. J. Bartlett, Reidel, Dordrecht (1985).
 - 8) E. A. Carter and W. A. Goddard, III, J. Phys. Chem.,

- 91, 4651 (1987); E. A. Carter and W. A. Goddard, III, J. Chem. Phys., 88, 1752 (1988); S. K. Shin, W. A. Goddard, III, and J. L. Beauchamp, J. Phys. Chem., 94, 6963 (1990);
 S. K. Shin, W. A. Goddard, III, and J. L. Beauchamp, J. Chem. Phys., 93, 4986 (1990).
- 9) G. E. Scuseria, M. Duran, R. G. A. R. MacLagan, and H. F. Schaefer, III, *J. Am. Chem. Soc.*, **108**, 3248 (1986).
- C. W. Bauschlicher, J. Am. Chem. Soc., 102, 5492 (1980);
 C. W. Bauschlicher, H. F. Schaefer, III, and P. S. Bagus, J. Am. Chem. Soc., 99, 7106 (1977).
- 11) G. L. Gutsev and T. Ziegler, *J. Phys. Chem.*, **95**, 7220 (1991).
- 12) D. A. Dixon, J. Phys. Chem., **90**, 54 (1986).
- 13) B. T. Luke, J. A. Pople, M. -B. Krogh-Jespersen, Y. Apeloig, M. Karni, J. Chandrasekhar, and P. V. R. Schleyer, J. Am. Chem. Soc., 108, 270 (1986).
- 14) S. Koda, Chem. Phys. Lett., **55**, 353 (1978); S. Koda, Chem. Phys., **66**, 383 (1982).
- 15) K. K. Murray, D. G. Leopold, T. M. Miller, and W. C. Lineberger, *J. Chem. Phys.*, **89**, 5442 (1988).
- J. F. Harrison, R. C. Lieke, and J. F. Liebman, J. Am. Chem. Soc., 101, 7162 (1979); P. H. Muleer, N. G. Rondan,
 K. N. Houk, J. F. Harrison, D. Hooper, B. H. Willen, and
 J. F. Liebman, J. Am. Chem. Soc., 103, 5049 (1981).
- 17) J. Farras, S. Olivella, A. Sole, and J. Vilarrasa, J. Comput. Chem., 7, 428 (1986).
- 18) G. Frenking and W. Koch, *Chem. Phys. Lett.*, **138**, 503 (1987).
- 19) S. T. Gibson, P. J. Greene, and J. Berkowitz, *J. Chem. Phys.*, **83**, 4319 (1985).
- 20) C. F. Bender, J. H. Meadows, and H. F. Schaefer, III, Faraday Discuss. Chem. Soc., 62, 58 (1977).
- 21) S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys., 42, 167 (1979).
- 22) S. A. Pope, I. H. Hillier, and M. F. Guest, Faraday Symp. Chem. Soc., 19, 109 (1984).
- 23) J. A. Pople and P. V. R. Schleyer, Chem. Phys. Lett., 129, 279 (1986); J. A. Pople and I. A. Curtiss, J. Phys. Chem., 91, 155 (1987).
- 24) G. P. Ford and P. S. Herman, J. Am. Chem. Soc., 111, 3987 (1989).
- 25) K. A. Peterson, R. C. Mayrhofer, E. L. Sibert, III, and R. C. Woods, *J. Chem. Phys.*, **94**, 414 (1991).
- 26) M. O'Keeffe, J. Am. Chem. Soc., 108, 4341 (1986).
- 27) J. J. Fisher and T. B. McMahon, J. Am. Chem. Soc., **110**, 7599 (1988).
- 28) J. F. Harrison and C. W. Eakers, *J. Am. Chem. Soc.*, **95**, 3467 (1973).
- 29) R. F. W. Bader, Y. Tal, S. G. Anderson, and T. T. Nguyen-Dang, Isr. J. Chem., 19, 8 (1980); R. F. W. Bader, T. T. Nguyen-Dang, and Y. Tal, Rep. Prog. Phys., 44, 893 (1981); R. F. W. Bader and T. T. Nguyen-Dang, Adv. Quantum Chem., 14, 63 (1981); R. F. W. Bader, "Atoms in Molecules. A Quantum Theory," Oxford Press, Oxford (1990).
- 30) W. R. Wadt and P. J. Hay, J. Chem. Phys., **82**, 284 (1985).
- 31) C. Møller and M. S. Plesset, *Phys. Rev.*, **46**, 618 (1934); J. S. Binkley and J. A. Pople, *Int. J. Quantum Chem.*, *Symp.*, **9S**, 229 (1975).
- 32) W. J. Hehre, R. Ditchfield, and J. A. Pople, *J. Chem. Phys.*, **56**, 2257 (1972).

- 33) A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking, *Chem. Phys. Lett.*, submitted. 34) J. A. Pople and R. K. Nesbet, *J. Chem. Phys.*, 22, 571 (1954).
- 35) R. F. Hout, B. A. Levi, and W. J. Hehre, *J. Comput. Chem.*, 3, 234 (1982); W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, "Ab initio Molecular Orbital Theory," Wiley, New York (1986).
- 36) A. Gobbi and G. Frenking, unpublished.
- 37) R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys., **72**, 650 (1980); A. D. McLean and G. S. Chandler, J. Chem. Phys., **72**, 5639 (1980).
- 38) "Gaussian 92, Revision A," M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzalez, R. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, and J. A. Pople, Gaussian Inc., Pittsburgh, PA (1992).
- 39) F. W. Biegler-König, R. F. W. Bader, and T. Ting-Hua, J. Comput. Chem., 3, 317 (1982).
- 40) J. H. Meadows and H. F. Schaefer, III, *J. Am. Chem. Soc.*, **98**, 4383 (1986).
- 41) R. C. Ivery, P. D. Schultze, T. C. Leggett, and D. A. Kohl, *J. Chem. Phys.*, **60**, 3174 (1974).
- 42) M. Okumura, B. D. Rehfuss, B. M. Dinelli, M. G. Bawendi, and T. Oka, *J. Chem. Phys.*, **90**, 5918 (1989).
- 43) P. Jensen, P. R. Bunker, and A. D. McLean, *Chem. Phys. Lett.*, **141**, 53 (1987).
- 44) S. J. Dunlavey, J. M. Dyke, N. Jonathan, and A. Morris, *Mol. Phys.*, **39**, 1121 (1980).
- 45) A. B. Cornford, D. C. Frost, F. G. Herring, and C. A. McDowell, *J. Chem. Phys.*, **54**, 1872 (1971).
- P. R. Bunker and P. Jensen, J. Chem. Phys., 79, 1224 (1983);
 P. Jensen, P. R. Bunker, and A. R. Hay, J. Chem. Phys., 77, 5370 (1982).
- 47) K. Fukui, Acc. Chem. Res., 4, 57 (1971); I. Fleming, "Frontier Orbitals and Organic Chemical Reactions," Wiley, New York (1976).
- 48) R. S. Mulliken, Rev. Mod. Phys., 14, 204 (1942); A. D. Walsh, J. Chem. Soc., 2260 (1953); R. J. Buenker and S. D. Peyerimhoff, Chem. Rev., 74, 127 (1974); B. M. Gimarc, "Molecular Structure and Bonding: The Qualitative Molecular Orbital Approach," Academic Press, New York (1979).
- 49) P. J. MacDougall and R. F. W. Bader, Can. J. Chem., **64**, 1496 (1986); C. Gatti, P. J. MacDougall, and R. F. W. Bader, J. Chem. Phys., **88**, 3792 (1988).
- 50) The following values for the atomic radii were taken from Ref. 52: H, 0.30 Å; C, 0.77 Å; N, 0.70 Å; F, 0.64 Å; Cl, 0.99 Å; Br, 1.14 Å, I, 1.33 Å.

- 51) Page 196f in Ref. 29d.
- 52) L. Pauling, "The Nature of the Chemical Bond," Cornell University Press, (1960).
- 53) D. Cremer and E. Kraka, *Angew. Chem.*, **96**, 612 (1984); *Angew. Chem.*, *Int. Ed. Engl.*, **23**, 627 (1984); G. Frenking, W. Koch, D. Cremer, J. Gauss, and J. F. Liebman, *J. Phys. Chem.*, **93**, 3410 (1989).
- 54) R. F. W. Bader, T. S. Slee, D. Cremer, and E. Kraka, J. Am. Chem. Soc., **105**, 5061 (1983).
- 55) M. Fujitoka and E. Hirota, *J. Mol. Spectrosc.*, **97**, 491 (1973).
- 56) G. Herzberg and J. W. C. Johns, *Proc. R. Soc. London, Ser. A*, **295**, 107 (1960).
- 57) T. Noro and M. Yoshimine, J. Chem. Phys., **91**, 3012 (1989).
- 58) T. Suzuki, S. Saito, and E. Hirota, *J. Mol. Spectrosc.*, **90**, 447 (1981).
- 59) M. Kakimoto, S. Saito, and E. Hirota, *J. Mol. Spectrosc.*, **97**, 194 (1983).
- 60) H. Petek, D. J. Nesbitt, P. R. Ogilby, and C. B. Moore, *J. Phys. Chem.*, **87**, 5367 (1983).
- 61) D. E. Milligan, D. E. Mann, M. E. Jacox, and R. A. Mitsch, J. Chem. Phys., 41, 1199 (1964); C. W. Mathews, Can. J. Chem., 45, 2355 (1967); A. S. Lefohn and G. C. Pimentel, J. Chem. Phys., 55, 1213 (1971); W. H. Kirchhoff, D. R. Lide, and F. X. Powell, J. Mol. Spectrosc., 47, 491 (1973); P. B. Davis, W. Lewis-Brown, and D. K. Russell, J. Chem. Phys., 75, 5602 (1981); P. B. Davies, P. A. Hamilton, J. M. Elliott, and M. J. Rice, J. Mol. Spectrosc., 102, 193 (1983); B. Burkholder, C. J. Howard, and P. A. Hamilton, J. Mol. Spectrosc., 127, 362 (1988).
- 62) D. E. Milligan and M. E. Jacox, J. Chem. Phys., 48, 2265 (1968).
- 63) D. E. Milligan and M. E. Jacox, *J. Chem. Phys.*, **47**, 703 (1967); L. Andrews, *J. Chem. Phys.*, **48**, 979 (1967).
- 64) M. E. Jacox and D. E. Milligan, J. Chem. Phys., 53, 2688 (1970).
- 65) D. E. Tevault and L. Andrews, J. Mol. Spectrosc., 54, 110 (1975).
- 66) L. Andrews and T. G. Carver, J. Chem. Phys., 49, 896 (1968).
- 67) D. E. Tevault and L. Andrews, J. Am. Chem. Soc., 97, 1707 (1975).
- 68) M. E. Jacox and D. E. Milligan, J. Chem. Phys., **50**, 3252 (1969).
- 69) M. E. Jacox and D. E. Milligan, J. Chem. Phys., 47, 1626 (1967).
- 70) P. Jensen and P. R. Bunker, *J. Chem. Phys.*, **89**, 1327 (1988).